Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5037, 2024 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424450

RESUMO

The filamentous Thermoascus aurantiacus fungus characterized by its thermophilic nature, is recognized as an exceptional producer of various enzymes with biotechnological applications. This study aimed to explore biotechnological applications using polygalacturonase (PG) derived from the Thermoascus aurantiacus PI3S3 strain. PG production was achieved through submerged fermentation and subsequent purification via ion-exchange chromatography and gel filtration methods. The crude extract exhibited a diverse spectrum of enzymatic activities including amylase, cellulase, invertase, pectinase, and xylanase. Notably, it demonstrated the ability to hydrolyze sugarcane bagasse biomass, corn residue, and animal feed. The purified PG had a molecular mass of 36 kDa, with optimal activity observed at pH 4.5 and 70 °C. The activation energy (Ea) was calculated as 0.513 kJ mol-1, highlighting activation in the presence of Ca2+. Additionally, it displayed apparent Km, Vmax, and Kcat values of at 0.19 mg mL-1, 273.10 U mL-1, and 168.52 s-1, respectively, for hydrolyzing polygalacturonic acid. This multifunctional PG exhibited activities such as denim biopolishing, apple juice clarification, and demonstrated both endo- and exo-polygalacturonase activities. Furthermore, it displayed versatility by hydrolyzing polygalacturonic acid, carboxymethylcellulose, and xylan. The T. aurantiacus PI3S3 multifunctional polygalacturonase showed heightened activity under acidic pH, elevated temperatures, and in the presence of calcium. Its multifunctional nature distinguished it from other PGs, significantly expanding its potential for diverse biotechnological applications.


Assuntos
Saccharum , Thermoascus , Poligalacturonase/metabolismo , Thermoascus/metabolismo , Celulose , Enzimas Multifuncionais , Saccharum/metabolismo , Concentração de Íons de Hidrogênio , Estabilidade Enzimática , Temperatura
2.
Braz J Microbiol ; 54(3): 1559-1564, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37440124

RESUMO

Denim, also known as jeans, is a fabric made up of braided cotton threads dyed indigo blue, whose fibers contain approximately 10% of non-cellulosic impurities that reduce its commercial value. Microbial enzymes can act in the cleaning and desizing processes of jeans, improving their color, softness, and covering capacity. The recombinant Xylanase II (XynA2) from the aquatic bacterial Caulobacter crescentus (C. crescentus), previously characterized in terms of its biochemical features, was applied to the biotreatment of jeans to clean and degum it. The biotreatment performance was evaluated in terms of tissue weight loss, amount of reducing sugars released and analysis of the images obtained by scanning electron microscopy (SEM). Biotreated tissues, at 12 and 24 h, showed a dry weight loss of 4.9 and 6.6%, respectively. The reducing sugars amount released after XynA2 action over the jean's fibers showed statistically significant values when compared with each other and with their respective controls. SEM images clearly shown that the fabric treated for 12 h presented a smooth and polished surface, while the fabric treated for 24 h showed the cotton fibers broken, displaying severe damage to the textile. The best treatment for the jeans was in the presence of 1 U mg-1 XynA2 at pH 8 and 60 °C during 12 h. In conclusion, XynA2 of C. crescentus was satisfactorily applied for the biopolishing of denim jeans being a more sustainable alternative to the use of chemical and abrasive processes to obtain the same effects.


Assuntos
Caulobacter crescentus , Caulobacter crescentus/genética , Têxteis , Fibra de Algodão , Índigo Carmim , Corantes
3.
Arch Microbiol ; 204(12): 702, 2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36370232

RESUMO

New alternatives have been under study as treatment due to the problem of multidrug-resistant bacteria. Among them, Wickerhamomyces anomalus mycocins have shown a great potential against several microorganisms since they have high antimicrobial activity, as well as they can be used as fast available nutrients and stand several extreme conditions. In this way, Klebsiella pneumoniae carbapenemases inhibition by mycocins produced by W. anomalus is important. Microdilution assays were carried out to evaluate strains inhibition in liquid medium and the test in solid medium were carried out. Toxicity was evaluated by both hemolysis and Artemia salina Leach tests. W. anomalus supernatant showed 2.36 U/mg ß-glucanases activity, and antimicrobial activity was evidenced in 100% Klebsiella pneumoniae carbapenemase strains up to 0.12 U/mg concentration. Besides, there was low toxicity in hemolysis and Artemia salina Leach tests. It is suggested that W. anomalus mycocins may be an alternative to develop new antimicrobial substances.


Assuntos
Anti-Infecciosos , Klebsiella pneumoniae , Antibacterianos/farmacologia , Proteínas de Bactérias , beta-Lactamases , Hemólise , Testes de Sensibilidade Microbiana
4.
Braz J Microbiol ; 53(3): 1133-1157, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35397075

RESUMO

The scientific community has been alarmed by the possible immunological evasion, higher infectivity, and severity of disease caused by the newest variants of SARS-CoV-2. The spike protein has an important role in the cellular invasion of viruses and is the target of several vaccines and therapeutic resources, such as monoclonal antibodies. In addition, some of the most relevant mutations in the different variants are on the spike (S) protein gene sequence that leads to structural alterations in the predicted protein, thus causing concern about the protection mediated by vaccines against these new strains. The present review highlights the most recent knowledge about COVID-19 and vaccines, emphasizing the different spike protein structures of SARS-CoV-2 and updating the reader about the emerging viral variants and their classifications, the more common viral mutations described and their distribution in Brazil. It also compiles a table with the most recent knowledge about all of the Omicron spike mutations.


Assuntos
SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Humanos , Mutação , SARS-CoV-2/genética , Proteínas do Envelope Viral/genética
5.
Mol Biol Rep ; 47(6): 4427-4438, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32424521

RESUMO

Biotechnology offers innovative alternatives for industrial bioprocesses mainly because it uses enzymes that biodegrade the hemicellulose releasing fermentable sugars. Caulobacter crescentus (C. crescentus) has seven genes responsible for xylanolytic cleavage, 5 to ß-xylosidases (EC 3.2.1.37) and 2 for endoxylanases, like xynA2 (CCNA_03137) that encodes Xylanase II (EC 3.2.1.8) of the glycohydrolases-GH10 group. The xynA2 gene was amplified by PCR, cloned into the pTrcHisA vector e efficiently overexpressed in E. coli providing a His-tag fusion protein. Recombinant xylanase (XynA2) was purified by affinity chromatography using a nickel sepharose column and exhibited a single 43 kDa band on SDS-PAGE gel. XynA2 showed an optimum alkaline pH (8) and stability at alkaline pH for 24 h. Although C. crescentus is mesophilic, XynA2 has optimum temperature of 60 °C and is thermo-resistance at 65 °C. XynA maintains 66% of the enzymatic activity at high temperatures (90 °C) without being denatured.The enzyme displayed a xylanolitic activity free of cellulase to xylan from beechwood and it was not inhibited in the presence of 50 µmol mL-1 of xylose. In addition, dithiothreitol (DTT) induced XynA2 activity, as it improved its kinetic parameters by lowering the KM (5.78 µmol mL-1) and increasing the KCat/KM ratio (1.63 U s-1). Finally, C. crescentus XynA2 efficiently hydrolyzed corn straw with high release of reducing sugars that can be applied in different branches of the industry.


Assuntos
Caulobacter crescentus/genética , Endo-1,4-beta-Xilanases/biossíntese , Endo-1,4-beta-Xilanases/isolamento & purificação , Biomassa , Cromatografia de Afinidade/métodos , Clonagem Molecular/métodos , Endo-1,4-beta-Xilanases/metabolismo , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Proteínas Recombinantes/genética , Especificidade por Substrato , Temperatura , Xilanos/metabolismo , Xilosidases
6.
Mol Biol Rep ; 47(2): 1499-1505, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31786767

RESUMO

The role of the clpB gene encoding HSP/chaperone ClpB was evaluated in the multiresistant antibiotic cells of Acinetobacter baumannii (RS4 strain) under stress-induced heat shock and different beta-lactams. The expression of the clpB gene was assessed by qPCR during heat shock at 45 °C and subinhibitory concentrations of ampicillin (30 µg mL-1), amoxicillin + sulbactam (8/12 µg mL-1), cefepime (30 µg mL-1), sulfamethoxazole + trimethoprim (120/8 µg mL-1) and meropenem (18 µg mL-1). The results indicated a transient increase in clpB transcription in all treatments except cefepime. Both in the presence of ampicillin and amoxicillin/sulbactam for 20 min, the mRNA-clpB synthesis was 1.4 times higher than that of the control at time zero. Surprisingly, the mRNA-clpB levels were more than 30-fold higher after 10 min of incubation with meropenem and more than eightfold higher in the presence of trimethoprim/sulfamethoxazole. In addition, western blot assays showed that the RS4 strain treated with meropenem showed a marked increase in ClpB protein expression. Our data indicate that during exposure to beta-lactams, A. baumannii adjusts the transcription levels of the clpB mRNA and protein to respond to stress, suggesting that the chaperone may act as a key cellular component in the presence of antibiotics in this bacterium.


Assuntos
Acinetobacter baumannii/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Genes Bacterianos , Resposta ao Choque Térmico/genética , Regulação para Cima/genética , beta-Lactamas/farmacologia , Acinetobacter baumannii/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Resposta ao Choque Térmico/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
7.
Braz. arch. biol. technol ; 63: e20190185, 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1132193

RESUMO

Abstract The second-generation bioethanol employs lignocellulosic materials degraded by microbial cellulases in their production. The fungus Trichoderma reesei is one of the main microorganisms producing cellulases, and its genetic modification can lead to the optimization in obtaining hydrolytic enzymes. This work carried out the deletion of the sequence that encodes the zinc finger motif of the transcription factor ACE1 (cellulase expression repressor I) of the fungus T. reesei RUT-C30. The transformation of the RUT-C30 lineage was confirmed by amplification of the 989 bp fragment relative to the selection marker, and by the absence of the zinc finger region amplification in mutants, named T. reesei RUT-C30Δzface1. The production of cellulases by mutants was compared to RUT-C30 and measured with substrates carboxymethylcellulose (CMC), microcrystalline cellulose (Avicel®) and Whatman filter paper (PF). The results demonstrated that RUT-C30Δzface1 has cellulolytic activity increased 3.2-fold in Avicel and 2.1-fold in CMC and PF. The mutants presented 1.4-fold higher sugar released in the hydrolysis of the biomass assays. These results suggest that the partial deletion of ace1 gene is an important strategy in achieving bioethanol production on an industrial scale at a competitive price in the fuel market.


Assuntos
Trichoderma/enzimologia , Celulase/biossíntese , Dedos de Zinco , Biomassa , Etanol , Biocombustíveis
8.
Braz. j. microbiol ; 47(3): 680-690, July-Sept. 2016. tab, graf
Artigo em Inglês | LILACS | ID: lil-788964

RESUMO

ABSTRACT A new strain of Thermomyces lanuginosus was isolated from the Atlantic Forest biome, and its β-xylosidases optimization in response to agro-industrial residues was performed. Using statistical approach as a strategy for optimization, the induction of β-xylosidases activity was evaluated in residual corn straw, and improved so that the optimum condition achieved high β-xylosidases activities 1003 U/mL. According our known, this study is the first to show so high levels of β-xylosidases activities induction. In addition, the application of an experimental design with this microorganism to induce β-xylosidases has not been reported until the present work. The optimal conditions for the crude enzyme extract were pH 5.5 and 60 °C showing better thermostability at 55 °C. The saccharification ability of β-xylosidase in the presence of hemicellulose obtained from corn straw raw and xylan from beechwood substrates showed a xylo-oligosaccharide to xylose conversion yield of 80 and 50%, respectively, at 50 °C. Our data strongly indicated that the β-xylosidases activities was not subjected to the effects of potential enzyme inhibitors often produced during fermentation process. These data suggest the application of this enzyme studied for saccharification of hemicellulose, an abundant residue in the American continents, thus providing an interesting alternative for future tests for energy production.


Assuntos
Ascomicetos/enzimologia , Xilosidases/metabolismo , Fermentação , Polissacarídeos/metabolismo , Polissacarídeos/química , Especificidade por Substrato , Temperatura , Xilose/metabolismo , Biomassa , Zea mays/química , Ativação Enzimática , Concentração de Íons de Hidrogênio , Hidrólise
9.
Braz J Microbiol ; 47(3): 680-90, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27256169

RESUMO

A new strain of Thermomyces lanuginosus was isolated from the Atlantic Forest biome, and its ß-xylosidases optimization in response to agro-industrial residues was performed. Using statistical approach as a strategy for optimization, the induction of ß-xylosidases activity was evaluated in residual corn straw, and improved so that the optimum condition achieved high ß-xylosidases activities 1003U/mL. According our known, this study is the first to show so high levels of ß-xylosidases activities induction. In addition, the application of an experimental design with this microorganism to induce ß-xylosidases has not been reported until the present work. The optimal conditions for the crude enzyme extract were pH 5.5 and 60°C showing better thermostability at 55°C. The saccharification ability of ß-xylosidase in the presence of hemicellulose obtained from corn straw raw and xylan from beechwood substrates showed a xylo-oligosaccharide to xylose conversion yield of 80 and 50%, respectively, at 50°C. Our data strongly indicated that the ß-xylosidases activities was not subjected to the effects of potential enzyme inhibitors often produced during fermentation process. These data suggest the application of this enzyme studied for saccharification of hemicellulose, an abundant residue in the American continents, thus providing an interesting alternative for future tests for energy production.


Assuntos
Ascomicetos/enzimologia , Fermentação , Xilosidases/metabolismo , Biomassa , Ativação Enzimática , Concentração de Íons de Hidrogênio , Hidrólise , Polissacarídeos/química , Polissacarídeos/metabolismo , Especificidade por Substrato , Temperatura , Xilose/metabolismo , Zea mays/química
10.
Appl Biochem Biotechnol ; 178(4): 766-95, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26536888

RESUMO

In the present review, we briefly summarize the biotechnological applications of microbial ß-xylosidases in the processing of agro-industrial residues into fuels and chemicals and report the importance of using immobilization techniques to study the enzyme. The advantages of utilizing genes that encode ß-xylosidases are readily apparent in the bioconversion of abundant, inexpensive, and renewable resources into economically important products, such as xylitol and bioethanol. We highlight recent research characterizing fungal and bacterial ß-xylosidases, including the use of classical biochemical methods such as purification, heterologous recombinant protein expression, and metagenomic approaches to discovery ß-xylosidases, with focus on enzyme molecular and kinetic properties. In addition, we discuss the relevance of using experimental design optimization methodologies to increase the efficacy of these enzymes for use with residual biomass. Finally, we emphasize more extensively the advances in the regulatory mechanisms governing ß-xylosidase gene expression and xylose metabolism in gram-negative and gram-positive bacteria and fungi. Unlike previous reviews, this revision covers recent research concerning the various features of bacterial and fungal ß-xylosidases with a greater emphasis on their biochemical characteristics and how the genes that encode these enzymes can be better exploited to obtain products of biotechnological interest via the application of different technical approaches.


Assuntos
Bactérias/enzimologia , Fungos/enzimologia , Xilosidases/metabolismo , Biotecnologia , Hidrólise , Cinética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Xilose/metabolismo , Xilosidases/genética , Xilosidases/isolamento & purificação
11.
Antonie Van Leeuwenhoek ; 108(4): 993-1007, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26264062

RESUMO

The Caulobacter crescentus (NA1000) xynB5 gene (CCNA_03149) encodes a predicted ß-glucosidase-ß-xylosidase enzyme that was amplified by polymerase chain reaction; the product was cloned into the blunt ends of the pJet1.2 plasmid. Analysis of the protein sequence indicated the presence of conserved glycosyl hydrolase 3 (GH3), ß-glucosidase-related glycosidase (BglX) and fibronectin type III-like domains. After verifying its identity by DNA sequencing, the xynB5 gene was linked to an amino-terminal His-tag using the pTrcHisA vector. A recombinant protein (95 kDa) was successfully overexpressed from the xynB5 gene in E. coli Top 10 and purified using pre-packed nickel-Sepharose columns. The purified protein (BglX-V-Ara) demonstrated multifunctional activities in the presence of different substrates for ß-glucosidase (pNPG: p-nitrophenyl-ß-D-glucoside) ß-xylosidase (pNPX: p-nitrophenyl-ß-D-xyloside) and α-arabinosidase (pNPA: p-nitrophenyl-α-L-arabinosidase). BglX-V-Ara presented an optimal pH of 6 for all substrates and optimal temperature of 50 °C for ß-glucosidase and α-L-arabinosidase and 60 °C for ß-xylosidase. BglX-V-Ara predominantly presented ß-glucosidase activity, with the highest affinity for its substrate and catalytic efficiency (Km 0.24 ± 0.0005 mM, Vmax 0.041 ± 0.002 µmol min(-1) mg(-1) and Kcat/Km 0.27 mM(-1) s(-1)), followed by ß-xylosidase (Km 0.64 ± 0.032 mM, Vmax 0.055 ± 0.002 µmol min(-1) mg(-1) and Kcat/Km 0.14 mM(-1)s(-1)) and finally α-L-arabinosidase (Km 1.45 ± 0.05 mM, Vmax 0.091 ± 0.0004 µmol min(-1) mg(-1) and Kcat/Km 0.1 mM(-1) s(-1)). To date, this is the first report to demonstrate the characterization of a GH3-BglX family member in C. crescentus that may have applications in biotechnological processes (i.e., the simultaneous saccharification process) because the multifunctional enzyme could play an important role in bacterial hemicellulose degradation.


Assuntos
Caulobacter crescentus/enzimologia , Glicosídeo Hidrolases/metabolismo , Xilosidases/metabolismo , beta-Glucosidase/metabolismo , Caulobacter crescentus/genética , Clonagem Molecular , Biologia Computacional , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Glicosídeo Hidrolases/genética , Concentração de Íons de Hidrogênio , Peso Molecular , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Temperatura , Xilosidases/genética , beta-Glucosidase/genética
12.
Appl Biochem Biotechnol ; 175(8): 3915-29, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25791579

RESUMO

Caulobacter crescentus (NA1000 strain) are aquatic bacteria that can live in environments of low nutritional quality and present numerous genes that encode enzymes involved in plant cell wall deconstruction, including five genes for ß-xylosidases (xynB1-xynB5) and three genes for xylanases (xynA1-xynA3). The overall activity of xylanases in the presence of different agro-industrial residues was evaluated, and it was found that the residues from the processing of corn were the most efficient in inducing bacterial xylanases. The xynA1 gene (CCNA_02894) encoding a predicted xylanase of group 10 of glyco-hydrolases (GH10) that was efficiently overexpressed in Escherichia coli LMG194 using 0.02 % arabinose, after cloning into the vector pJet1.2blunt and subcloning into the expression vector pBAD/gIII, provided a fusion protein that contained carboxy-terminal His-tags, named XynA1. The characterization of pure XynA1 showed an enzymatic activity of 18.26 U mL(-1) and a specific activity of 2.22 U mg-(1) in the presence of xylan from beechwood as a substrate. XynA1 activity was inhibited by EDTA and metal ions such as Cu(2+) and Mg(2+). By contrast, ß-mercaptoethanol, dithiothreitol (DTT), and Ca(2+) induced recombinant enzyme activity. Kinetic data for XynA1 revealed K M and V max values of 3.77 mg mL-(1) and 10.20 µM min-(1), respectively. Finally, the enzyme presented an optimum pH of 6 and an optimum temperature of 50 °C. In addition, 80 % of the activity of XynA1 was maintained at 50 °C for 4 h of incubation, suggesting a thermal stability for the biotechnological processes. This work is the first study concerning the cloning, overexpression, and enzymatic characterization of C. crescentus xylanase.


Assuntos
Caulobacter crescentus/enzimologia , Endo-1,4-beta-Xilanases/genética , Proteínas Recombinantes/genética , Sequência de Aminoácidos , Caulobacter crescentus/genética , Clonagem Molecular , Endo-1,4-beta-Xilanases/biossíntese , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Cinética , Proteínas Recombinantes/biossíntese , Xilanos/metabolismo
13.
Rev Inst Med Trop Sao Paulo ; 56(3): 259-64, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24879005

RESUMO

Paracoccidioidomycosis (PCM) is caused by the dimorphic fungus Paracoccidioides brasiliensis (Pb) and corresponds to prevalent systemic mycosis in Latin America. The aim of the present work was to evaluate the dose response effect of the fungal yeast phase for the standardization of an experimental model of septic arthritis. The experiments were performed with groups of 14 rats that received doses of 103, 104 or 105 P. brasiliensis (Pb18) cells. The fungi were injected in 50 µL of phosphate-buffered saline (PBS) directly into the knee joints of the animals. The following parameters were analyzed in this work: the formation of swelling in knees infused with yeast cells and the radiological and anatomopathological alterations, besides antibody titer by ELISA. After 15 days of infection, signs of inflammation were evident. At 45 days, some features of damage and necrosis were observed in the articular cartilage. The systemic dissemination of the fungus was observed in 11% of the inoculated animals, and it was concluded that the experimental model is able to mimic articular PCM in humans and that the dose of 105 yeast cells can be used as standard in this model.


Assuntos
Artrite Experimental/microbiologia , Artrite Infecciosa/microbiologia , Paracoccidioides/patogenicidade , Paracoccidioidomicose/microbiologia , Animais , Artrite Experimental/patologia , Artrite Infecciosa/patologia , Artrografia , Histocitoquímica , Masculino , Paracoccidioidomicose/patologia , Ratos , Ratos Wistar
14.
Rev. Inst. Med. Trop. Säo Paulo ; 56(3): 259-264, May-Jun/2014. tab, graf
Artigo em Inglês | LILACS | ID: lil-710412

RESUMO

Paracoccidioidomycosis (PCM) is caused by the dimorphic fungus Paracoccidioides brasiliensis (Pb) and corresponds to prevalent systemic mycosis in Latin America. The aim of the present work was to evaluate the dose response effect of the fungal yeast phase for the standardization of an experimental model of septic arthritis. The experiments were performed with groups of 14 rats that received doses of 103, 104 or 105 P. brasiliensis (Pb18) cells. The fungi were injected in 50 µL of phosphate-buffered saline (PBS) directly into the knee joints of the animals. The following parameters were analyzed in this work: the formation of swelling in knees infused with yeast cells and the radiological and anatomopathological alterations, besides antibody titer by ELISA. After 15 days of infection, signs of inflammation were evident. At 45 days, some features of damage and necrosis were observed in the articular cartilage. The systemic dissemination of the fungus was observed in 11% of the inoculated animals, and it was concluded that the experimental model is able to mimic articular PCM in humans and that the dose of 105 yeast cells can be used as standard in this model.


A paracoccidioidomicose (PCM) é causada pelo fungo dimórfico Paracoccidioides brasiliensis (Pb) e corresponde à micose sistêmica de maior prevalência na América Latina. O objetivo do presente trabalho foi avaliar a dose resposta de leveduras do fungo para padronização do modelo experimental de artrite séptica. Os experimentos foram realizados com grupos de 14 ratos que receberam doses de 103, 104 ou 105 células de P. brasiliensis (Pb18). Os fungos foram injetados em 50 µL de solução salina em tampão fosfatado (PBS) diretamente na articulação do joelho dos animais. Os seguintes parâmetros foram analisados neste trabalho: a formação de edema nos joelhos infundidos com as células das leveduras e alterações radiológicas, anatopalógicas além de titulação de anticorpos por Elisa. Após 15 dias de infecção, os sinais de inflamação foram evidentes. Aos 45 dias, algumas características de dano e necrose foram observadas na cartilagem articular. A disseminação sistêmica do fungo foi observada em 11% dos animais inoculados, concluiu-se que o modelo experimental é capaz de mimetizar a PCM articular em humanos e que a dose de 105 leveduras representa a dose padrão para o desenvolvimento do modelo.


Assuntos
Animais , Masculino , Ratos , Artrite Experimental/microbiologia , Artrite Infecciosa/microbiologia , Paracoccidioides/patogenicidade , Paracoccidioidomicose/microbiologia , Artrografia , Artrite Experimental/patologia , Artrite Infecciosa/patologia , Histocitoquímica , Paracoccidioidomicose/patologia , Ratos Wistar
15.
Appl Biochem Biotechnol ; 172(2): 1085-97, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24142353

RESUMO

Caulobacter crescentus is able to express several enzymes involved in the utilization of lignocellulosic biomasses. Five genes, xynB1-5, that encode ß-xylosidases are present in the genome of this bacterium. In this study, the xynB2 gene, which encodes ß-xylosidase II (CCNA_02442), was cloned under the control of the PxylX promoter to generate the O-xynB2 strain, which overexpresses the enzyme in the presence of xylose. In addition, a null mutant strain, Δ-xynB2, was created by two homologous recombination events where the chromosomal xynB2 gene was replaced by a copy that was disrupted by the spectinomycin-resistant cassette. We demonstrated that C. crescentus cells lacking ß-xylosidase II upregulates the xynB genes inducing ß-xylosidase activity. Transcriptional analysis revealed that xynB1 (RT-PCR analysis) and xynB2 (lacZ transcription fusion) gene expression was induced in the Δ-xynB2 cells, and high ß-xylosidase activity was observed in the presence of different agro-industrial residues in the null mutant strain, a characteristic that can be explored and applied in biotechnological processes. In contrast, overexpression of the xynB2 gene caused downregulation of the expression and activity of the ß-xylosidase. For example, the ß-xylosidase activity that was obtained in the presence of sugarcane bagasse was 7-fold and 16-fold higher than the activity measured in the C. crescentus parental and O-xynB2 cells, respectively. Our results suggest that ß-xylosidase II may have a role in controlling the expression of the xynB1 and xynB2 genes in C. crescentus.


Assuntos
Caulobacter crescentus/enzimologia , Caulobacter crescentus/genética , Deleção de Genes , Genes Bacterianos , Regulação para Cima/genética , Xilosidases/genética , Regulação Bacteriana da Expressão Gênica , Teste de Complementação Genética , Indústrias , Mutação/genética , Fenótipo , Regiões Promotoras Genéticas/genética , Transcrição Gênica , Xilosidases/metabolismo
16.
Appl Biochem Biotechnol ; 168(8): 2218-29, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23054825

RESUMO

In the present work, the gene xynB2, encoding a ß-xylosidase II of the Glycoside Hydrolase 39 (GH39) family, of Caulobacter crescentus was cloned and successfully overexpressed in Escherichia coli DH10B. The recombinant protein (CcXynB2) was purified using nickel-Sepharose affinity chromatography, with a recovery yield of 75.5 %. CcXynB2 appeared as a single band of 60 kDa on a sodium dodecyl sulfate polyacrylamide gel and was recognized by a specific polyclonal antiserum. The predicted CcXynB2 protein showed a high homology with GH39 ß-xylosidases of the genus Xanthomonas. CcXynB2 exhibited an optimal activity at 55 °C and a pH of 6. CcXynB2 displayed stability at pH values of 4.5-7.5 for 24 h and thermotolerance up to 50 °C. The K (M) and V (Max) values were 9.3 ± 0.45 mM and 402 ± 19 µmol min(-1) for ρ-nitrophenyl-ß-D-xylopyranoside, respectively. The purified recombinant enzyme efficiently produced reducing sugars from birchwood xylan and sugarcane bagasse fibers pre-treated with a purified xylanase. As few bacterial GH39 family ß-xylosidases have been characterized, this work provides a good contribution to this group of enzymes.


Assuntos
Caulobacter crescentus/enzimologia , Xilosidases/genética , Xilosidases/metabolismo , Biomassa , Caulobacter crescentus/genética , Clonagem Molecular , Escherichia coli/genética , Expressão Gênica , Hidrólise , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Saccharum/química , Xilanos/metabolismo , Xilosidases/biossíntese , Xilosidases/isolamento & purificação
17.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 10): 1339-45, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22993088

RESUMO

ß-Xylosidases (EC 3.2.1.37) are among the principal glycosyl hydrolases involved in the breakdown of hemicelluloses, catalyzing the reduction of xylooligosaccharides to free xylose. All GH39 ß-xylosidases structurally characterized to date display a modular multi-domain organization that assembles a tetrameric quaternary structure. In this work, the crystal structure and the SAXS molecular envelope of a new GH39 ß-xylosidase from Caulobacter crescentus (CcXynB2) have been determined. Interestingly, CcXynB2 is a monomer in solution and comparative structural analyses suggest that the shortened C-terminus prevents the formation of a stable tetramer. Moreover, CcXynB2 has a longer loop from the auxiliary domain (the long α-helix-containing loop) which makes a number of polar and hydrophobic contacts with the parental (α/ß)(8)-barrel domain, modifying the accessibility and the molecular topography of the catalytic interface. These interactions also maintain the accessory domain tightly linked to the catalytic core, which may be important for enzyme function and stability.


Assuntos
Domínio Catalítico , Caulobacter crescentus/enzimologia , Simulação de Dinâmica Molecular , Xilosidases/química , Motivos de Aminoácidos , Cristalografia por Raios X , Mapeamento de Interação de Proteínas , Estrutura Secundária de Proteína , Espalhamento a Baixo Ângulo , Difração de Raios X
18.
World J Microbiol Biotechnol ; 28(9): 2879-88, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22806729

RESUMO

The xynB1 gene (CCNA 01040) of Caulobacter crescentus that encodes a bifunctional enzyme containing the conserved ß-Xylosidase and α-L-Arabinofuranosidase (ß-Xyl I-α-L-Ara) domains was amplified by PCR and cloned into the vector pJet1.2Blunt. The xynB1 gene was subcloned into the vector pPROEX-hta that produces a histidine-fused translation product. The overexpression of recombinant ß-Xyl I-α-L-Ara was induced with IPTG in BL21 (DE3) and the resulting intracellular protein was purified with pre-packaged nickel-Sepharose columns. The recombinant ß-Xyl I-α-L-Ara exhibited a specific ß-Xylosidase I activity of 1.25 U mg(-1) to oNPX and a specific α-L-Arabinofuranosidase activity of 0.47 U mg(-1) to pNPA. The predominant activity of the recombinant enzyme was its ß-Xylosidase I activity, and the enzymatic characterization was focused on it. The ß-Xylosidase I activity was high over the pH range 3-10, with maximal activity at pH 6. The enzyme activity was optimal at 45 °C, and a high degree of stability was verified over 240 min at this temperature. Moreover, ß-Xylosidase activity was inhibited in the presence of the metals Zn(2+) and Cu(2+), and the enzyme exhibited K(M) and V(Max) values of 2.89 ± 0.13 mM and 1.4 ± 0.04 µM min(-1) to oNPX, respectively. The modeled structure of ß-xylosidase I showed that its active site is highly conserved compared with other structures of the GH43 family. The increase in the number of contact residues responsible for maintaining the dimeric structure indicates that this dimer is more stable than the tetramer form.


Assuntos
Caulobacter crescentus/enzimologia , Caulobacter crescentus/genética , Xilosidases/metabolismo , Sequência de Aminoácidos , Clonagem Molecular , DNA Bacteriano/genética , Genes Bacterianos , Glicosídeo Hidrolases/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Estrutura Terciária de Proteína , Recombinação Genética , Análise de Sequência de DNA , Especificidade por Substrato , Xilosidases/genética , Xilosidases/isolamento & purificação
19.
Mycopathologia ; 174(3): 187-91, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22460985

RESUMO

Paracoccidioidomycosis (PCM), a disease caused by the fungus Paracoccidioides brasiliensis (Pb), is highly prevalent in Brazil, where it is the principal cause of death by systemic mycoses. The disease primarily affects men aged 30-50 year old and usually starts as a pulmonary focus and then may spread to other organs and systems, including the joints. The present study aimed to develop an experimental model of paracoccidioidomycotic arthritis. Two-month-old male Wistar rats (n = 48) were used, divided in 6 groups: test groups EG/15 and EG/45 (received one dose of 100 µl of saline containing 10(5) Pb viable yeasts in the knee); heat killed Pb-group HK/15 and HK/45 (received a suspension of 10(5) Pb nonviable yeasts in the knee) and control groups CG/15 and CG/45 (received only sterile saline in the knee). The rats were killed 15 and 45 days postinoculation. In contrast with the control rats, the histopathology of the joints of rats of the test groups (EG/15 and EG/45) revealed a picture of well-established PCM arthritis characterized by extensive sclerosing granulomatous inflammation with numerous multiple budding fungal cells. The X-ray examination revealed joint alterations in these groups. Only metabolic active fungi evoked inflammation. The experimental model was able to induce fungal arthritis in the knees of the rats infected with metabolic active P. brasiliensis. The disease tended to be regressive and restrained by the immune system. No evidence of fungal dissemination to the lungs was observed.


Assuntos
Artrite/patologia , Modelos Animais de Doenças , Paracoccidioides/patogenicidade , Paracoccidioidomicose/patologia , Animais , Artrite/microbiologia , Artrografia , Histocitoquímica , Articulações/patologia , Masculino , Paracoccidioidomicose/microbiologia , Ratos , Ratos Wistar
20.
J Med Microbiol ; 59(Pt 9): 1061-1068, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20576751

RESUMO

We studied the expression of DnaK and GroEL in Acinetobacter baumannii cells (strains ATCC 19606 and RS4) under stress caused by heat shock or antibiotics. A Western blot assay showed that DnaK and GroEL levels increased transiently more than 2-fold after exposure of bacterial cells to heat shock for 20 min at 50 degrees C. Heat induction of DnaK and GroEL was blocked completely when an inhibitor of transcription, rifampicin, was added 1 min before a temperature upshift to 50 degrees C, suggesting that the induction of these chaperones depends on transcription. A. baumannii cells pretreated at 45 degrees C for 30 min were better able to survive at 50 degrees C for 60 min than cells pretreated at 37 degrees C, indicating that A. baumannii is able to acquire thermotolerance. DnaK and GroEL were successfully induced in cells pre-incubated with a subinhibitory concentration of streptomycin. Moreover, bacterial cells pretreated for 30 min at 45 degrees C were better able to survive streptomycin exposure than cells pretreated at physiological temperatures. DnaK expression was upregulated in a multidrug-resistant strain of A. baumannii (RS4) in the presence of different antimicrobials (ampicillin+sulbactam, cefepime, meropenem and sulphamethoxazole+trimethoprim). This study is to the best of our knowledge the first to show that A. baumannii DnaK and GroEL could play an important role in the stress response induced by antibiotics.


Assuntos
Acinetobacter baumannii/metabolismo , Adenosina Trifosfatases/metabolismo , Antibacterianos/farmacologia , Chaperonina 60/metabolismo , Regulação Bacteriana da Expressão Gênica , Temperatura Alta , Acinetobacter baumannii/efeitos dos fármacos , Adenosina Trifosfatases/genética , Chaperonina 60/genética , Farmacorresistência Bacteriana Múltipla/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...